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Relativistic Radiation Hydrodynamic Equations in Cylindrical Coordinates
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In many astrophysical systems such as accretion disks and jets, radiation interacts with rela-
tivistically moving matter. With applications to such systems in mind, I use the covariant ten-
sor conservation laws to derive special relativistic, time-dependent, three-dimensional energy and
momentum equations for matter and radiation in cylindrical coordinates. The equations can be
conveniently applied to various radiation hydrodynamic processes with cylindrical symmetry. Ra-
diation moments, like the radiation energy density, flux, and pressure, are defined in the comoving
(with the flow) frame first and then transformed to the corresponding covariant quantities. The
interaction between matter and radiation is also described in the comoving frame while the equa-
tions are represented in coordinates that are fixed with respect to the central object. As a concrete
example, the relativistic equations of motion for a cylindrical gas flow interacting with a spherically
symmetric radiation field are presented.
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I. INTRODUCTION

Matter and radiation are generally the most impor-
tant components of many astrophysical systems. Pho-
tons are produced, absorbed, and scattered by matter,
and through such processes, radiation imparts energy
and momentum to matter. The dynamics of matter and
the characteristics of radiation should be treated simul-
taneously and consistently.

When matter is moving in addition, photons experi-
ence red- and blueshifts, aberration, bulk Comptoniza-
tion, and so forth. Moreover, clocks tick and lengths
contract differently for different observers moving with
different velocities. Thus, one needs to be careful describ-
ing matter and radiation for different frames of reference.
Thomas derived a special relativistic theory of radiative
transfer that incorporated such effects [1]. Lindquist gen-
eralized the theory to curved spacetimes and presented
the radiation moment equations for spherically symmet-
ric cases [2]. Anderson & Spiegel [3] also derived the
generalized moment equations, and Thorne [4] formu-
lated the projected symmetric trace-free moment formal-
ism that led to general relativistic moment equations up
to an arbitrary order. Most of these work were based on
comoving descriptions because the comoving frame is the
most natural frame to describe the radiation field and its
interactions with matter. However, the comoving-frame
formalism leads to rather involved equations because the
velocity of matter changes from place to place and from
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time to time.
I reformulated the relativistic radiation hydrodynam-

ics from a covariant tensor description of matter and ra-
diation for one-dimensional general-relativistic spherical
flows [5,6] and for three-dimensional special-relativistic
flows in spherical coordinates [7]. In my formalism, radi-
ation and its interactions with matter are first described
by comoving quantities and then recast into covariant
quantities while the radiation moment equations are pre-
sented in fixed coordinates, which make the equations
easier to understand and apply. In this paper, I will
show you how I can apply such a mixed-frame formal-
ism to obtain the three-dimensional special relativistic
radiation hydrodynamic equations in cylindrical coordi-
nates, which can be useful in dealing with axisymmetric
accretion disks and jets [8–12]. No cylindrical symmetry,
however, is assumed for matter or radiation; therefore,
the result can be applied to any three-dimensional sys-
tems. I also specifically apply the equations to the case
of a spherically symmetric radiation field produced by a
point light source at the center to get the equations of
motion for the gas in such systems. I closely follow Ref.
[7] for all definitions and derivations.

II. TENSOR EQUATIONS

1. Matter

The energy-momentum tensor of an ideal gas is

Tαβ ≡ ωgU
αUβ + Pgg

αβ , (1)
-736-
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where Uα is the four velocity of the gas and ωg ≡ εg +Pg

is the gas enthalpy per unit proper volume, which is the
sum of the gas energy density εg and the gas pressure
Pg. The enthalpy of a gas is a function of the gas tem-
perature and density. For a non-ideal gas or other equa-
tion of state, the corresponding energy-momentum ten-
sor should be used.

2. Radiation

The radiation stress tensor consists of zeroth, first, and
second moments in the angle of the radiation field,

Rαβ =
∫ ∫

I(n, ν)nαnβdνdΩ, (2)

where nα ≡ pα/hν, with pα being the four-momentum of
photons, and I(xα;n, ν) is the specific intensity of pho-
tons moving in direction n on a unit sphere of projected
tangent space with the frequency ν measured by a fidu-
cial observer.

3. Radiation Hydrodynamic Equations

The particle number, rather than the mass density, is
conserved in relativistic hydrodynamics,

(nUα);α = 0. (3)

In the presence of an external force, the energy-
momentum tensor of matter plus the stress tensor of
radiation satisfy(

Tαβ + Rαβ
)
;β

= fα. (4)

The four-force density of an external non-radiative force,
fα = (f t, f), such as gravity, has three spatial compo-
nents f , a force density per unit proper volume, and a
time component f t = v ·f , where v is the proper velocity
[13].

If the micro-physical processes of interactions between
radiation and matter are known, the equation can be sep-
arated into two conservation equations, one for the radi-
ation and one for the matter. Such interactions can be
incorporated in the radiation four-force density, defined
to describe the energy and the momentum transferred
from the matter to the radiation [13],

Gα ≡ 1
c

∫
dν

∫
dΩ[χI(n, ν)− η]nα, (5)

where χ is the opacity per unit proper length and η the
emissivity per proper unit volume. This radiation four-
force density is equal to the divergence of the energy-
momentum tensor for matter minus the external four-
force density,

Tαβ
;β = Gα + fα, (6)

and to minus the divergence of the radiation stress ten-
sor,

Rαβ
;β = −Gα. (7)

III. CYLINDRICAL COORDINATES

The above tensor equations can be recast into explicit
hydrodynamic and radiation moment equations once a
specific coordinate system is chosen.

1. Metric and Tetrads

A flat spacetime metric in cylindrical coordinates is

dτ2 = −gαβdxαdxβ = dt2 − dR2 −R2dθ2 − dz2. (8)

The Greek indices, such as α or β, run from 0 to 3 while
the roman indices, such as i and j, run from 1 to 3.

Two relevant velocities can be defined. The four-
velocity of the gas,

Uα ≡ dxα

dτ
, (9)

is a covariant vector, which is defined for given coordi-
nates and satisfies the normalization condition

UαUα = −1. (10)

The proper velocity, a velocity measured by a fiducial
observer at rest with respect to the fixed coordinates, is
a spatial three vector,

vi = vi =
ũi

γ
, (11)

where

ũi ≡ √gii U i =
√

gii Ui ≡ ũi (no summation for i).
(12)

The Lorentz factor for the proper velocity is γ ≡ [1 −
v2]−1/2 = U t, where v2 ≡ vivi.

A tetrad is a locally inertial frame, and physical quan-
tities, such as the energy density or the radiation mo-
ments, are straightforwardly defined in a given tetrad.
In radiation hydrodynamics, fixed and comoving tetrads
are the most relevant ones. A fixed tetrad with base eî
is a tetrad fixed with respect to the coordinates and can
be expressed in terms of the coordinate base as

∂

∂t̂
=

∂

∂t
,

∂

∂R̂
=

∂

∂R
,

∂

∂θ̂
=

1
R

∂

∂θ
,

∂

∂ẑ
=

∂

∂z
. (13)

The comoving tetrad moves with velocity vi relative to
the fixed tetrad and, therefore, is related to the fixed
tetrad by the Lorentz tranformation

∂

∂xα̂
co

= Λβ̂
α̂(v)

∂

∂xβ̂
, (14)
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where α̂ and β̂ denote the tetrad’s bases. Hence, the
comoving tetrad in terms of the coordinate base is

∂

∂t̂co

= γ
∂

∂t
+ γvR ∂

∂R
+ γvθ 1

R

∂

∂θ
+ γvz ∂

∂z
,

∂

∂R̂co

= γvR ∂

∂t
+

[
1 + (γ − 1)

vRvR

v2

]
∂

∂R

+(γ − 1)
vRvθ

v2

1
R

∂

∂θ
+ (γ − 1)

vRvz

v2

∂

∂z
,

∂

∂θ̂co

= γvθ ∂

∂t
+ (γ − 1)

vθvR

v2

∂

∂R
(15)

+
[
1 + (γ − 1)

vθvθ

v2

]
1
R

∂

∂θ
+ (γ − 1)

vθvz

v2

∂

∂z
,

∂

∂ẑco
= γvz ∂

∂t
+ (γ − 1)

vzvR

v2

∂

∂R

+(γ − 1)
vzvθ

v2

1
R

∂

∂θ
+

[
1 + (γ − 1)

vzvz

v2

]
∂

∂z
.

The inverse transformation from the comoving tetrad to
the fixed tetrad is similarly obtained from the inverse
Lorentz transformation Λα̂

β̂(−v), which also provides
the transformation between the coordinate base and the
comoving tetrad:

∂

∂t̂
=

∂

∂t
= γ

∂

∂t̂co

− γvR ∂

∂R̂co

− γvθ ∂

∂θ̂co

− γvz ∂

∂ẑco
,

∂

∂R̂
=

∂

∂R
= −γvR ∂

∂t̂co

+
[
1 + (γ − 1)

vRvR

v2

]
∂

∂R̂co

+(γ − 1)
vRvθ

v2

∂

∂θ̂co

+ (γ − 1)
vRvz

v2

∂

∂ẑco
,

∂

∂θ̂
=

1
R

∂

∂θ
= −γvθ ∂

∂t̂co

+ (γ − 1)
vθvR

v2

∂

∂R̂co

(16)

+
[
1 + (γ − 1)

vθvθ

v2

]
∂

∂θ̂co

+ (γ − 1)
vθvz

v2

∂

∂ẑco
,

∂

∂ẑ
=

∂

∂z
= −γvz ∂

∂t̂co

+ (γ − 1)
vzvR

v2

∂

∂R̂co

+(γ − 1)
vzvθ

v2

∂

∂θ̂co

+
[
1 + (γ − 1)

vzvz

v2

]
∂

∂ẑco
.

2. Radiation Moments

The zeroth moments of the radiation field, the radia-
tion energy densities, in the fixed and in the comoving
tetrad frames are

E =
∫ ∫

IνdνdΩ, Eco =
∫ ∫

IνcodνcodΩco, (17)

where dΩ and dΩco are the solid angle elements in the
fixed and the comoving tetrads, respectively [7]. The first
moment, the radiation flux, has three spatial components
defined as

F i =
∫ ∫

IνnidνdΩ, F i
co =

∫ ∫
Iνco

ni
codνcodΩco.(18)

The second moment, the radiation pressure tensor, is
symmetric and has six components,

P ij =
∫ ∫

IνninjdνdΩ,

P ij
co =

∫ ∫
Iνco

ni
con

j
codνcodΩco. (19)

The fixed tetrad components of the radiation stress
tensor in terms of these moments are

Rα̂β̂ =


E FR F θ F z

FR PRR PRθ PRz

F θ PRθ P θθ P θz

F z PRφ P θz P zz

 , (20)

and the comoving tetrad components are

Rα̂β̂
co =


Eco FR

co F θ
co F z

co

FR
co PRR

co PRθ
co PRφ

co

F θ
co PRθ

co PRθ
co P θz

co

F z
co PRφ

co P θz
co P zz

co

 . (21)

Meanwhile, the contravariant form of the radiation stress
tensor

Rαβ =
∂xα

∂xµ̂

∂xβ

∂xν̂
Rµ̂ν̂ (22)

contains all the coordinate specifics:

Rαβ =


E FR R−1F θ F z

FR PRR R−1PRθ PRz

R−1F θ R−1PRθ R−2P θθ R−1P θz

F z PRz R−1PRz P zz

 .(23)

Applying the Lorentz transformation between the fixed-
and comoving-frame moments yields the transformation
law between them [13,14]:

Eco = γ2
[
E − 2viF

i + vivjP
ij

]
,

F i
co =

[
δi
j + (

γ − 1
v2

+ γ2)vivj

]
F j − γ2viE

−γvj

[
δi
k +

γ − 1
v2

vivk

]
P jk, (24)

P ij
co = γ2vivjE − γ

[
viδj

k + vjδi
k + 2

γ − 1
v2

vivjvk

]
F k

+(δi
k +

γ − 1
v2

vivk)(δj
l +

γ − 1
v2

vjvl)P kl.

3. Radiation Four-force Density

Since the interactions between radiation and matter
are most naturally described in the comoving frame, first
the comoving-frame tetrad components of the radiation
four-force density are defined as

Gα̂
co =

1
c

∫
dνco

∫
dΩco[χcoIνco

− ηco]nα̂
co. (25)
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In the case of isotropic scattering and emission, Gα̂
co can

be written in terms of more familiar quantities, the heat-
ing and cooling functions, Γco and Λco, and the opacity,
χ̄co, all defined in the comoving frame:

Gt̂
co = Γco − Λco, Gî

co = χ̄coF
i
co, (26)

where

Γco ≡
1
c

∫
dνco

∫
dΩcoχcoIνco

,

Λco ≡
1
c

∫
dνco

∫
dΩcoηco, (27)

χ̄coF
i
co ≡

1
c

∫
dνco

∫
dΩcoχcoIνco

ni
co.

The contravariant components of the radiation four-force
density are related to the tetrad components by

Gt = γGt̂
co + γviGî

co,

GR = GR̂
co + γvRGt̂

co +
γ − 1
v2

vRviG
î
co, (28)

RGθ = Gθ̂
co + γvθGt̂

co +
γ − 1
v2

vθviG
î
co,

Gz = Gẑ
co + γvzGt̂

co +
γ − 1
v2

vzviG
î
co.

IV. RADIATION HYDRODYNAMIC
EQUATIONS

1. Continuity Equation

Now, the continuity equation, Eq. (3), in cylindrical
coordinates becomes

∂

∂t
(γn)+

1
R

∂

∂R
(RnUR)+

∂

∂θ
(nUθ)+

∂

∂z
(nUz) = 0.(29)

2. Euler and Energy Equations

Projecting Eq. (6) perpendicular to Uα yields the rel-
ativistic Euler equations, the R-component of which is

γωg
∂UR

∂t
+ ωgU

i ∂UR

∂xi
− ωgR(Uθ)2

+
∂Pg

∂R
+ γUR ∂Pg

∂t
+ URU i ∂Pg

∂xi
(30)

= −γURGt + [1 + (UR)2]GR + R2URUθGθ

+URUzGz + fR + URUβfβ ,

while the θ-component of the equation is

γωg
∂Uθ

∂t
+ ωgU

i ∂Uθ

∂xi
+ 2ωg

URUθ

R

+
1

R2

∂Pg

∂θ
+ γUθ ∂Pg

∂t
+ UθU i ∂Pg

∂xi
(31)

= −γUθGt + UθURGR + [1 + R2(Uθ)2]Gθ

+UθUzGz + fθ + UθUβfβ ,

and the z-component of the equation is

γωg
∂Uz

∂t
+ ωgU

i ∂Uz

∂xi

+
∂Pg

∂z
+ γUz ∂Pg

∂t
+ UzU i ∂Pg

∂xi
(32)

= −γUzGt + UzURGR + R2UzUθGθ

+[1 + (Uz)2]Gz + fz + UzUβfβ .

The energy equation for the matter is obtained by pro-
jecting Eq. (6) along Uα:

−nU t ∂

∂t

(ωg

n

)
− nU i ∂

∂xi

(ωg

n

)
+ U t ∂Pg

∂t
+ U i ∂Pg

∂xi

= −Gt̂
co + Uαfα = Λco − Γco + Uαfα. (33)

3. Radiation Moment Equations

The radiation energy equation is the time component
of Eq. (7),

∂E

∂t
+

1
R

∂

∂R
(RFR) +

1
R

∂F θ

∂θ
+

∂F z

∂z
(34)

= −Gt = γ
(
Λco − Γco

)
− χ̄coũiF

i
co.

The left-hand side of Eq. (34) appears simpler than
the corresponding equation in comoving coordinates (see
e.g., Refs. [4] and [15]) because the temporal and the
spatial derivatives of the fixed-frame moments are cal-
culated with respect to the fixed coordinates while the
interactions between matter and radiation are described
by the comoving-frame quantities. This ‘mixed-frame’
description simplifies the equation and makes each term
easier to understand.

The R-component of Eq. (7) produces the radiation
momentum equation in the R-direction:

∂FR

∂t
+

∂PRR

∂R
+

1
R

∂PRθ

∂θ
+

∂PRz

∂z
+

PRR − P θθ

R

= −χ̄coF
R
co − ũR(Γco − Λco)−

γ − 1
ũ2

ũRũiχ̄coF
i
co.

(35)

The radiation momentum equation in the θ-direction
from Eq. (7) is

∂F θ

∂t
+

∂PRθ

∂R
+

1
R

∂P θθ

∂θ
+

∂P θz

∂z
+

2PRθ

R
(36)

= −χ̄coF
θ
co − ũθ(Γco − Λco)−

γ − 1
ũ2

ũθũiχ̄coF
i
co,

and that in the z-direction is

∂F z

∂t
+

∂PRz

∂R
+

1
R

∂P θz

∂θ
+

∂P zz

∂z
+

PRz

R
(37)

= −χ̄coF
z
co − ũz(Γco − Λco)−

γ − 1
ũ2

ũzũiχ̄coF
i
co.
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4. Closure Relation

Due to the innate nature of the moment expansion,
moment equations do not constitute a complete system
of equations: the number of unknown variables is al-
ways larger than that of the equations. For example, we
need 16 variables to describe the matter and the radi-
ation field: n, T , Uα, E, F i, and P ij . The number of
equations, however, is only 10: 1 from the normaliza-
tion of Uα (Eq. (10)), 1 from the continuity equation
(Eq. (29)), 3 from the Euler equations (Eqs. (30)–(32)),
1 from the energy equation (Eq. (33)), and 4 from the
radiation moment equations (Eqs. (35)–(37)). Thus we
need to provide additional relations to close the system of
equations. The most popular closure relation for a one-
dimensional problem is the Eddington factor that relates
the second radiation moment P to the zeroth radiation
moment E,

fE ≡
P

E
, (38)

which has an asymptotic value 1/3 when τ � 1 and
1 when τ � 1. The exact shape of fE can be calcu-
lated from fully angle-dependent radiative transfer calcu-
lations, generally for a static or steady one-dimensional
flow with a prescribed velocity structure [16–18]. Some-
times, for a complex dynamic radiation flow an educated
guess of fE as a function of the optical depth is the best
we can do [19,20]. However, it is not proven at all that
such a treatment would be valid for a flow with a strong
velocity gradient or for a three-dimensional flow.

Since there are virtually no fully angle- and time-
dependent radiative transfer calculations for a three-
dimensional relativistic flow, the detailed form of fE for
such a problem is entirely unknown. We may utilize a
generalized form of the Eddington factor derived from
the maximum entropy method by Minerbo [21], but lit-
tle is known about its validity or accuracy in specific
problems, except for steady and symmetric cases [22].
Therefore, until we accumulate more knowledge about
the relativistic three-dimensional radiative transfer, we
need to be cautious about applying the radiation mo-
ment formalism with a prescribed Eddington factor.

Nonetheless, there are cases in which the radiation
field, or equally, radiation moments, are trivially deter-
mined. I will consider one such example.

V. EXAMPLE: SPHERICALLY SYMMETRIC
RADIATION FIELD

Certain classes of astrophysical accretion systems can
be approximated by a cylindrical gas flow with a point-
like central radiation source. I will apply the radiation
hydrodynamic equations to such cases to derive the equa-
tion of motion for the gas. Although the current treat-
ment is correct up to arbitrary order in v, I will keep
only terms up to the first order in v for clarity.

When the central radiation source is at rest with re-
spect to the coordinates and photons stream out radially,
the radiation flux measured by a fixed-frame observer is
simply

F = F r r̂ = FRR̂ + F z ẑ, (39)

where

F r ≡ L

4πr2
, FR ≡ F r

(
R

r

)
, F z ≡ F r

(z

r

)
, (40)

and E denotes the radiation energy density measured by
a fixed observer. In general, E 6= F r, but in the stream-
ing limit, E ≈ F r. From Eq. (24), the comoving flux
measured by an observer comoving with the gas becomes

FR
co = FR −

[
vR(1 +

R2

r2
) + vz Rz

r2

]
E,

F θ
co = −vθE, (41)

F z
co = F z −

[
vz(1 +

z2

r2
) + vR Rz

r2

]
E.

The tetrad form of the radiation stress energy tensor is

Rα̂β̂ =


E FR 0 F z

FR R2

r2 E 0 Rz
r2 E

0 0 0 0
F z Rz

r2 E 0 z2

r2 E

 . (42)

Also, to the first order in v, γ = 1 + O(v2), ũi = vi +
O(v2), and χ̄co = χ̄ + O(v2).

Substituting the above definitions and simplification
to Eqs. (30)–(32) yields the equations of motion. The
R-component of the equation of motion is

ωg
∂vR

∂t
+ ωgv

i ∂vR

∂xi
− ωgR(vθ)2

+
∂Pg

∂R
+ vR ∂Pg

∂t
+ vRvi ∂Pg

∂xi
(43)

= fR + χ̄FR −
[
vR(1 +

R2

r2
) + vz Rz

r2

]
χ̄E + O(v2).

The third term on the right-hand side of the equation
acts as a radiation drag and reflects the fact that the
moving gas sees the comoving flux FR

co rather than the
fixed-frame flux FR. The θ-component of the equation
of motion is

ωg
∂vθ

∂t
+ ωgv

i ∂vθ

∂xi
+ 2ωg

vRvθ

R

+
1
R

∂Pg

∂θ
+ vθ ∂Pg

∂t
+ vθvi ∂Pg

∂xi
(44)

= fθ − χ̄vθE + O(v2).

The second term on the right-hand side, −χ̄vθE, is the
radiation drag in the θ-direction due to an aberration of
the radially streaming photons, namely, the Poynting-
Robertson effect. The z-component of the equation is

ωg
∂vz

∂t
+ ωgv

i ∂vz

∂xi
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+
∂Pg

∂z
+ vz ∂Pg

∂t
+ vzvi ∂Pg

∂xi
(45)

= fz + χ̄F z −
[
vR Rz

r2
+ vz(1 +

z2

r2
)
]

χ̄E + O(v2),

and we again see a radiation drag in z-direction due to an
aberration of photons. Finally, the gas energy equation
is of the same form as in the spherical coordinates [7]:

−n
∂

∂t

(ωg

n

)
− nvi ∂

∂xi

(ωg

n

)
+

∂Pg

∂t
+ vi ∂Pg

∂xi

= Λco − Γco − f t + vif
i. (46)

VI. SUMMARY

Three-dimensional special-relativistic, hydrodynamic
and radiation moment equations are derived. Matter and
radiation quantities are defined in fixed and comoving
tetrads and are transformed to corresponding covariant
forms. The interactions between radiation and matter
are described similarly by the radiation four-force den-
sity defined in the comoving tetrad and transformed to
the covariant form. Conservation of energy and momen-
tum tensor for matter and, separately, for radiation leads
to the relativistic hydrodynamic and radiation moment
equations. The current approach is a mixed-frame for-
malism in the sense that the physical quantities and in-
teractions are described in the comoving frame while the
physics of matter and radiation is described within the
fixed coordinate system. This formalism is general and
can be applied to any coordinates or spacetimes, but in
this paper, I specifically showed how to derive the equa-
tions in cylindrical coordinates. As an example, I also
applied the formalism to a cylindrical gas flow with a
central light source to obtain the relativistic equations
of motion relevant for accretion disks and jets.
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