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We study the cosmology of the Brans-Dicke theory with perfect fluid-type matter. In our previous
work, we found exact solutions for any Brans-Dicke parameter ω and for the general parameter γ of
the equation of state. In this paper, we further study the cosmology of those solutions by analyzing
them according to their asymptotic behaviors. The cosmology is classified into nineteen phases
according to the values of γ and ω. The effect of the cosmological constant on the Brans-Dicke
theory is a particular case of our model. We plot the time evolution of the scale factor by using
numerical investigations. We also compare the solutions for the theories with and without matter.

I. INTRODUCTION

Recent developments of the string theory suggest that
in the region of Planck length curvature, the quantum
fluctuation is very large so that string coupling becomes
large and, consequently, the fundamental string degrees
of freedom are not weakly coupled good ones [1]. Instead,
solitonic degrees of freedom, like p-brane or D-p-brane
[2], are more important. Therefore, it is a very interest-
ing question to ask what is the effect of these new de-
grees of freedom on the space-time structure, especially
whether including these degrees of freedom resolves the
initial singularity, which is a problem in standard gen-
eral relativity. A new gravity theory that can deal with
such a new degree of freedom should be a deformation
of the standard general relativity so that in a certain
limit it should reduce to the standard Einstein theory.
The Brans-Dicke theory [3] is a generic deformation of
general relativity and allows variable gravity coupling.
Therefore, whatever the motivation for modifying the
Einstein theory, the Brans-Dicke theory is the first one
to be considered. As an example, the low-energy limit of
the string theory contains the Brans-Dicke theory with
a fine-tuned deformation parameter (ω = −1).

Without knowing the exact theory of the p-brane cos-
mology, the best guess is that it should be a Brans-Dicke
theory with matter. In fact, there is some evidence for
this [4]: it is found that the natural metric that couples
to the p-brane is the Einstein metric multiplied by a cer-
tain power of the dilaton field. In terms of this new met-
ric, the action that gives the p-brane solution becomes
the Brans-Dicke action with a definite deformation pa-
rameter ω depending on p. Using this action, Rama [5]
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recently argued that the gas of the solitonic p-brane [4]
treated as perfect-fluid type matter in a Brans-Dicke the-
ory can resolve the initial singularity without any explicit
solution. In previous papers [6,7], we studied that model
and found exact cosmological solutions for any Brans-
Dicke parameter ω and for a general equation of state
and we classified the cosmology of the solutions accord-
ing to the range of the parameters involved.

In this paper, we further study the cosmology of those
solutions by analyzing them according to their asymp-
totic behaviors. The cosmology is classified into nineteen
phases according to the values of γ and ω. The effect of
the cosmological constant on the Brans-Dicke theory is
a particular case of our model. We plot the time evolu-
tion of the scale factor by using numerical investigations.
We also compare the solutions for the theories with and
without matter. See also Ref. 8.

The rest of this paper is organized as follows. In Sec-
tion II, we set up the notation and review our previous
results [6,7]. In Section III, we describe two new phases
which were not mentioned in Ref. 6, and we classify the
cosmology into nineteen phases. Using numerical and an-
alytical methods, we present the behaviors of the scale
factor in figures. In Section IV, we present a summary
and then conclude with some discussion.

II. BRANS-DICKE COSMOLOGY WITH
MATTER

First, we briefly review our earlier work [6]. We con-
sider the Brans-Dicke theory and analyze the evolution of
the D-dimensional homogeneous isotropic universe with
perfect fluid-type matter. The action is given by

S =
∫
dDx
√
−ge−φ [R− ω∂µφ∂µφ] + Sm, (1)
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Fig. 1. Phase diagram of 11 regions.

where φ is the dilaton field and Sm is the matter part
of the action. Here, we assume that the matter has no
dilaton coupling.

Let’s assume that the matter can be treated as a per-
fect fluid with the equation of state

p = γρ, γ < 1. (2)

Therefore, our starting point is the equation of the
Brans-Dicke theory [9,10]

Rµν −
gµν
2
R =

eφ

2
Tµν + ω

{
∂µφ∂νφ−

gµν
2

(∂φ)2
}

+{−∂µ∂νφ+∂µφ∂νφ+gµνD2φ−gmuν(∂φ)2},
0 = R− 2ωD2φ+ ω(∂φ)2, (3)

where φ is the dilaton and D means a covariant deriva-
tive. R is the curvature scalar, and the metric is given
as

ds2 = − 1
N
dt2 + E2α(t)δijdx

idxj (4)

(i, j = 1, 2, · · · , D − 1),

where eα(t)(= a(t)) is the scale factor and N is the (con-
stant) lapse function.

The energy-momentum tensor is given by

Tµν = pgµν + (p+ ρ)UµUν , (5)

where Uµ is the fluid velocity. The hydrostatic equilib-
rium condition of energy-momentum conservation is

ρ̇+ (D − 1)(p+ ρ)α̇ = 0. (6)

Using the equation of state, Eq. (2), with a free param-
eter γ, we get the solution

ρ = ρ0e
−(D−1)(1+γ)α, (7)

where ρ0 is a real number. Our goal is to study how
the metric variables change their behaviors for various
values of γ and ω. Now, since we consider only the time
dependence, the action can be brought to the following
form:

S =
∫
dt e(D−1)α−φ

[
1√
N

{
− (D−2)(D−1)α̇2

+2(D−1)α̇φ̇+ωφ̇2
}
−
√
Nρ0e

−(D−1)(1+γ)α+φ

]
, (8)

where we have eliminated p and ρ by using Eq. (6).
After getting the constraint equation by varying over the
constant lapse function, N , we can set it to be one.

Table. 1. The sign of T± determines the range of time t as follows: t(τ) maps the real line of τ to (1) (−∞,∞) if T− < 0 < T+,
(2) (−∞, tf ] if T− < 0 and T+ < 0, (3) [ti,∞) if T− > 0 and T+ > 0, and (4) [ti, tf ] if T+ < 0 < T−. The sign of H±/T±
determines the asymptotic behavior of the scale factor a(t).

phase sign of κ sign of T− sign of T+ range of t sign of H−/T− sign of H+/T+

I - + - [ti, tf ] + +

II - - - (−∞, tf ] - +

III− + + [ti, tf ] +

III+ + + [ti,∞) +

IV - - + (−∞,∞) + +

V - + + [ti,∞) - +

V I - + + [ti,∞) + +

V II− + + [ti,∞) +

V II+ + + (−∞,∞) +

V III− + + [ti,∞) +

V III+ + - (−∞, tf ] -

IX− + + [ti,∞) +

IX+ + + (−∞,∞) +

X− + + [ti,∞) +

X+ + - (−∞, tf ] -

XI− + + [ti,∞) +

XI+ + - (−∞, tf ] +
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Fig. 2. Phase diagram, 12 regions.

Now, introducing a new time variable τ as

dτ = e−(D−1)α+φdt (9)

and the new variables

X = −1
2

[(D − 1)(1− γ)α− φ],

Y = α+
ν

κ
X, (10)

we can write the action as

S=
∫
dτ

[
1√
N

{
(D−1)κẎ 2+µẊ2

}
−
√
Nρ0e

−2X

]
,(11)

where

κ = (D − 1)(1− γ)2(ω − ωκ),

ν = 2(1− γ)(ω − ων),

µ = −4(D − 2)
κ

(ω − ω−1),

ωκ = − D − 2Dγ + 2γ
(D − 1)(1− γ)2

,

ων = − 1
1− γ

,

ω−1 = −D − 1
D − 2

. (12)

The constraint equation is given by

0 = (D − 1)κẎ 2 + µẊ2 + ρ0e
−2X . (13)

Note that for D > 2 and γ < 1, the sign of κ is deter-
mined by that of ω−ωκ, and the sign of µ is determined
by those of ω − ω−1 and κ.

The equations of motion are simply

0 = Ÿ ,

0 = Ẍ − ρ0

µ
e−2X . (14)

When ρ0 = 0, the situation is that of the string cos-
mology discussed first in Ref. 11, and the solution for
X is X = cτ . One can easily show that this solution
has two disconnected branches in terms of the original
time t; one is an inflation-type branch and the other is a
FRW-type branch. If ρ0 6= 0, the asymptotic behavior of
X is X ∼ c | τ |, as we will see later. In other words, the
behavior of the cosmology at ρ0 6= 0 is not continuously
connected to that of the cosmology at ρ0 = 0 in τ → −∞
region. Some of the new aspects of the cosmology due

Table. 2. All possible phases are classified. Here, phases XII− and XII+ are new phases.

phase sign of sign of sign of range of H−/T− Γ H+/T+

κ T− T+ t (τ → 0)

I - + - [ti, tf ] H−/T− > 1 0 < H+/T+ < 1

II - - - (−∞, tf ] H−/T− < 0 0 < H+/T+ < 1

III− + + [ti, tf ] 0 < H−/T− < 1

III+ + + [ti,∞) H+/T+ > 1

IV - - + (−∞,∞) H−/T− > 1 0 < H+/T+ < 1

V - + + [ti,∞) H−/T− < 0 0 < H+/T+ < 1

V I - + + [ti,∞) 0 < H−/T− < 1 0 < H+/T+ < 1

V II− + + [ti,∞) 0 < H−/T− < 1 Γ < 0

V II+ + + (−∞,∞) Γ < 0 H+/T+ > 1

V III− + + [ti,∞) 0 < H−/T− < 1 Γ < 0

V III+ + - (−∞, tf ] Γ < 0 H+/T+ < 0

IX− + + [ti,∞) 0 < H−/T− < 1 0 < Γ < 1

IX+ + + (−∞,∞) 0 < Γ < 1 H+/T+ > 1

X− + + [ti,∞) 0 < H−/T− < 1 0 < Γ < 1

X+ + - (−∞, tf ] 0 < Γ < 1 H+/T+ < 0

XI− + + [ti,∞) 0 < H−/T− < 1 0 < Γ < 1

XI+ + - (−∞, tf ] 0 < Γ < 1 0 < H+/T+ < 1

XII− + + [ti,∞) 0 < H−/T− < 1 Γ > 1

XII+ + - (−∞, tf ] Γ > 1 0 < H+/T+ < 1



-466- Journal of the Korean Physical Society, Vol. 34, No. 5, May 1999

Fig. 3. The behavior of the scale factor from phase I to V I.

to the presence of matter come from this discontinuity.
If ρ0 is a negative constant, then the solution oscillates
in time, leading to an unphysical solution. This includes
the situation where there is a negative cosmological con-
stant in the Brans-Dicke theory. In this paper, therefore,
we will consider only positive ρ0.

If ω is less than ω−1, the kinetic term of the dilaton has
a negative energy in the Einstein frame. Thus, we will
consider the case where ω is larger than ω−1. According
to the sign of κ, the types of solutions are very different.
When κ is negative, the exact solution is

X = ln
[q
c

cosh(cτ)
]
,

Y = Aτ +B, (15)

where c, A, B, and q =
√

ρ0
|µ| are arbitrary real constants.

Using the constraint equation, we can determine A in
terms of the other parameters:

A=
c

δ
, with δ=

√
− (D−1)κ

µ
=

| κ |

2
√

1+ωD−2
D−1

. (16)

If κ is zero, it turns out that the solution of the equations
of motion does not satisfy the constraint equation. If κ
is positive, the solution is

X = ln
[q
c
| sinh(cτ) |

]
,

Y =
c

δ
τ +B. (17)

III. PHASES OF THE BRANS-DICKE
THEORY

In Ref. 6, the behaviors of the scale factor were classi-
fied according to ω and γ by using eleven regions in Fig.
1. The asymptotic behaviors of the scale factor a(τ) and
the time t(τ) as τ → ±∞ were shown to be

t− t0 ≈
1
T±

(
eT±τ − eT±τ0

)
,

T± =
2c
| κ |

[
(D − 1)γ

√
1 + ω

D − 2
D − 1

∓sign(κ){κ+ (D − 1)γ(1 + ω(1− γ))}

]
,

a(τ) ≈ eH±τ ,

H± =
2c
| κ |

[√
1+ω

D−2
D−1

∓sign(κ){1+ω(1−γ)}

]
.(18)

Note that the range of t is determined by the sign of T±:

(−∞,∞) if T− < 0 < T+,
(−∞, tf ) if T− < 0 and T+ < 0,
(ti,∞) if T− > 0 and T+ > 0,
(ti, tf ) if T+ < 0 < T−.

For κ > 0, t(τ) and a(τ) behave as [6]

t ≈ −sign(τ)
q−ηe(D−1)γB

(η − 1)
1

| τ |η−1
,
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Fig. 4. The behavior of the scale factor from phase V II− to X+.

a ≈ eB(q | τ |)−
2(1−γ)(ω−ων )

|κ| , (19)

as τ goes to zero, where η = 2+ (D−1)γν
κ . t(τ) is singular

as τ → 0 if η > 1. Thus, for κ > 0 and η > 1, the scale
factor a(t) has two branches. The asymptotic form of
a(t) as a function of t is given by

a(t) ≈ [T−(t− ti)]H−/T− as τ → −∞,
a(t) ≈ [T+(t− tf )]H+/T+ as τ →∞, (20)

where ti (tf ) is the starting (ending) point at finite time.
Equation (18) contains the cases where t starts from −∞

and/or ends at ∞ by setting ti = 0 and/or tf = 0.
According to the signs of T±, H±/T±, and the singularity
at τ = 0, we classified the behavior of the Brans-Dicke
theory [6].
Here, we summarize the result by Table 1. Now, no-
tice that not only the sign of H±/T± but also that of
H±/T±− 1 is important because the universe will accel-
erate if H±/T±− 1 > 0 and decelerate if H±/T±− 1 < 0
when τ → ±∞. Therefore, we further classify the phases
of cosmology accordingly.

Fig. 5. The behavior of the scale factor from phase XI− to XII+.
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1. Case ω < ωκ

A. H−/T− > 1

• For T− > 0, the condition H−/T− > 1 is reduced
to √

1 + ω
D − 2
D − 1

>
(D − 1)γ − 1

(1− γ)(D − 1)
. (21)

If γ < 1/(D − 1), the condition is automatically
satisfied. If γ > 1/(D − 1), the inequality in Eq.
(21) turns out to be reduced to ω > ωκ, which
is surprising. This means that there is no solution.
Therefore, among the regions I and V I which have
T− > 0, H− > 0, and ω < ωκ, only I satisfies
H−/T− > 1.

• If T− < 0, the condition H−/T− > 1 is reduced to√
1 + ω

D − 2
D − 1

<
(D − 1)γ − 1

(1− γ)(D − 1)
, (22)

whose solution is γ > 1/(D− 1) and ω < ωκ. Only
IV satisfies the conditions, ω < ωκ, T− < 0, H− <
0, and H−/T− > 1.

B. H+/T+ > 1

• If T+ > 0, the condition H+/T+ > 1 implies√
1 + ω

D − 2
D − 1

< − (D − 1)γ − 1
(1− γ)(D − 1)

, (23)

whose solution is given by γ < 1/(D − 1) and ω <
ωκ. There is no region satisfying T+ > 0, γ <
1/(D − 1), and ω < ωκ.

• If T+ < 0, H+/T+ > 1 is reduced to√
1 + ω

D − 2
D − 1

> − (D − 1)γ − 1
(1− γ)(D − 1)

, (24)

whose solution is γ > 1/(D − 1) or ω > ωκ for
γ < 1/(D − 1). There is no region satisfying the
conditions ω < ωκ, T+ < 0, and H+/T+ > 1.

2. Case ω > ωκ

A. H−/T− > 1

• For T− > 0, the condition H−/T− > 1 is reduced
to √

1 + ω
D − 2
D − 1

< − (D − 1)γ − 1
(1− γ)(D − 1)

, (25)

whose solution is γ < 1/(D − 1) and ω < ωκ.
Therefore, there is no solution satisfying the con-
ditions: ω < ωκ and H−/T− > 1.

• If T− < 0, the condition is given by√
1 + ω

D − 2
D − 1

> − (D − 1)γ − 1
(1− γ)(D − 1)

. (26)

The solution is γ > 1/(D − 1) or ω > ωκ for γ <
1/(D − 1). Therefore, the solution is summarized
by ω > ωκ. However, in the case ω > ωκ, there is
no region satisfying T− < 0.

B. H+/T+ > 1

• For T+ > 0, the condition H+/T+ > 1 is reduced
to √

1 + ω
D − 2
D − 1

>
(D − 1)γ − 1

(1− γ)(D − 1)
. (27)

The solution is γ < 1/(D − 1) or ω > ωκ for γ >
1/(D − 1). Thus the solution is summarized by
ω > ωκ, as in the last case. The regions III+,
V II+, and IX+ have solutions satisfying ω > ωκ,
T+ > 0, and H+/T+ > 1.

• If T+ < 0, the above condition is reduced to√
1 + ω

D − 2
D − 1

<
(D − 1)γ − 1

(1− γ)(D − 1)
, (28)

whose solution is γ > 1/(D − 1) and ω < ωκ.
Therefore, there is no solution satisfying ω < ωκ
because the solution ω < ωκ is inconsistent with
the assumption ω > ωκ.

C. The power behavior of the scale factor as
τ → 0

As τ → 0, a(t) is given by

a(t) ≈ E × | t |Γ (29)

where Γ is given by

Γ =
2(1− γ)(ω − ων)

(η − 1)κ
,
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and the constant E becomes

E = [q(η − 1)]
2(1−γ)(ω−ων )

(η−1)|κ| e
B
[
1− 2(D−1)γ(1−γ)(ω−ων )

(η−1)κ

]
.

For ω > ωκ and η > 1, the condition that Γ is positive
is satisfied in the region ω > ων . The condition Γ > 1 is
reduced to

(1− γ) + [(D − 1)γ + (D − 3)]ω + (D − 2) < 0. (30)

This gives the following solution:

ω < − D−2
(1−γ)((D−1)γ+D−3)

for γ>−D−3
D−1

, (31)

ω > − D−2
(1−γ)((D−1)γ+D−3)

for γ<−D−3
D−1

. (32)

Note that for γ > −D−3
D−1 , ωκ is always greater than

− D−2
(1−γ)((D−1)γ+D−3) . Thus in that case, there is no so-

lution. As a result, the solution to Γ > 1 is given by Eq.
(32). This divides region XI of Fig. 1 into two region:
for 0 < Γ < 1 we call this as region XI and for Γ > 1 we
call this as region XII. See Fig 2. Now we summarize
all possible phases in Table 2.

Using the numerical work, we show the explicit scale
factor behaviors of all phases in the following figures.
Here, we set D = 4. All phases in Fig. 3 have no sin-
gularity at τ = 0, and the phases II and IV have no
initial singularity. The asymptotic behavior of the scale
factor is determined by H±/T±. Note that phases III−
and III+, which are continuously connected at τ = 0,
are not distinguished in Ref. 6. Since the scale factors
of phases III± vanishe at τ = 0, they are divided into
two phases in this paper.

Each region included in Fig. 4 and Fig. 5 has two
branches, and each branch defines a different phase. For
example, the earlier asymptotic behavior of the V II−

phase (Fig. 4(a)) and the later asymptotic behavior of
the V II+ phase (Fig. 4(b)) are determined by H±/T±,
and the later behavior of the V II− phase and the ear
motivated [6] by the string cosmology [11] with a gas
of solitonic p-brane by treating it as perfect fluid-type
matter in the Brans-Dicke theory. In the Brans-Dicke
theory, matter has no dilaton coupling. From the string
theory point of view, this means that matter has R-R
charge. Hence the matter considered here corresponds
to a D-brane gas in string theory context. With this
matter, we found exact cosmological solutions for any
Brans-Dicke parameter ω and for the general constant
γ, and we classified all possible phases of the solutions
according to the parameters involved. There are two
new phases XII± different from XI± for the behavior
of scale factor at τ = 0. Thus, the number of total phases
is nineteen, and some of them have no initial singularity.
We studied all the phases of the cosmology numerically
and presented figures for the time evolution of the scale
factor.

Recently, Ref. 12 argued that the holographic prin-
ciple in the presence of a cosmological constant might

imply the absence of an initial singularity. In the Brans-
Dicke cosmology, we do find some solutions avoiding the
initial singularity. However, when we regard the Brans-
Dicke theory as a string cosmology, we might ask whether
there are solutions which resolve the initial singularity
and the graceful-exit problems at the same time. How-
ever, the cosmological constant in the Brans-Dicke the-
ory is not a cosmological constant in string theory where
the cosmological constant couples to the dilaton. To dis-
cuss the problem in our framework, we have to consider
matter coupled with the dilaton. We will discuss this
problem in later publications.
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